Azo reductase activity of intact saccharomyces cerevisiae cells is dependent on the Fre1p component of plasma membrane ferric reductase.
نویسندگان
چکیده
Unspecific bacterial reduction of azo dyes is a process widely studied in correlation with the biological treatment of colored wastewaters, but the enzyme system associated with this bacterial capability has never been positively identified. Several ascomycete yeast strains display similar decolorizing behaviors. The yeast-mediated process requires an alternative carbon and energy source and is independent of previous exposure to the dyes. When substrate dyes are polar, their reduction is extracellular, strongly suggesting the involvement of an externally directed plasma membrane redox system. The present work demonstrates that, in Saccharomyces cerevisiae, the ferric reductase system participates in the extracellular reduction of azo dyes. The S. cerevisiae Deltafre1 and Deltafre1 Deltafre2 mutant strains, but not the Deltafre2 strain, showed much-reduced decolorizing capabilities. The FRE1 gene complemented the phenotype of S. cerevisiae Deltafre1 cells, restoring the ability to grow in medium without externally added iron and to decolorize the dye, following a pattern similar to the one observed in the wild-type strain. These results suggest that under the conditions tested, Fre1p is a major component of the azo reductase activity.
منابع مشابه
The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator.
Fre1p and Fre2p are ferric reductases which account for the total plasma membrane associated activity, a prerequisite for iron uptake, in Saccharomyces cerevisiae. The two genes are transcriptionally induced by iron depletion. In this communication, we provide evidence that Fre2p has also cupric reductase activity, as has been previously shown for Fre1p (Hassett, R., and Kosman, D.J. (1995) J. ...
متن کاملRegulated expression of the Saccharomyces cerevisiae Fre1p/Fre2p Fe/Cu reductase related genes.
The Saccharomyces cerevisiae genome contains nine open reading frames (ORFs)--YLR214w (FRE1), YKL220c (FRE2), YOR381w, YNR060w, YOR384w, YLL051c, YOL152w, YGL160w and YLR047c--which, based on amino acid sequence similarity, fall in the category of iron/copper reductase-related genes. FRE1 and FRE2 are the first identified and studied genes of this family. They both encode for plasma membrane fe...
متن کاملA Cytochrome b561 with Ferric Reductase Activity from the Parasitic Blood Fluke, Schistosoma japonicum
BACKGROUND Iron has an integral role in numerous cellular reactions and is required by virtually all organisms. In physiological conditions, iron is abundant in a largely insoluble ferric state. Ferric reductases are an essential component of iron uptake by cells, reducing iron to the soluble ferrous form. Cytochromes b561 (cyts-b561) are a family of ascorbate reducing transmembrane proteins fo...
متن کاملTwo distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae.
Iron uptake in Saccharomyces cerevisiae involves at least two steps: reduction of ferric to ferrous ions extracellularly and transport of the reduced ions through the plasma membrane. We have cloned and molecularly characterized FRE2, a gene which is shown to account, together with FRE1, for the total membrane-associated ferric reductase activity of the cell. Although not similar at the nucleot...
متن کاملIron Reduction and Trans Plasma Membrane Electron Transfer in the Yeast Saccharomyces cerevisiae.
The ferri-reductase activity of whole cells of Saccharomyces cerevisiae (washed free from the growth medium) was markedly increased 3 to 6 h after transferring the cells from a complete growth medium (preculture) to an iron-deficient growth medium (culture). This increase was prevented by the presence of iron, copper, excess oxygen, or other oxidative agents in the culture medium. The cells wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 71 7 شماره
صفحات -
تاریخ انتشار 2005